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Confinement of Quarks

cooler

QCD: computed on BlueGene-L by my LLNL colleagues,
refined by Budapest-Wuppertal Collaboration

Tc � 145− 170 MeV
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The deuterium “bottleneck”

➥

deuteron: 2.2 MeV binding

mass/energy

p

n until T ≃ 100 keV (1 billion K), t ≃ 3 min

n n
n p

p p



helium:  -28.3 MeV

The deuterium “bottleneck” is broken, neutrons flow into He 

➥ deuteron:  -2.2 MeV

tritium:  -8.5 MeV

➥

➥

He stability:  ↑,↓ protons and ↑,↓ neutrons can be packed together

mass/energy



{

The early universe contains 75% H and 25% He by mass fraction

Helium

Hydrogen



this picture very sensitive to binding energy of deuterium which is 
finely tuned (most nuclei have ~8 MeV binding per nucleon)!

more finely tuned
all neutrons decay - no helium
mostly hydrogen stars?

natural scenario
all neutrons captured in deuterium and 
helium - no hydrogen
no stars like ours!

What if

Bd � 2.22 MeV

Bd � 2.22 MeV

(also very sensitive to                                      )

we want to understand this from QCD

mn −mp ∝
�

md −mu

e2/4π



0

a −V0

0

a−V0

proton-neutron scattering at low energies
1S0 : a � −24 fm 3S1 : a � 5.5 fm

Fine tuning gives small deuteron binding energy

RNN ∼ 1.4 fm

deuteron

Solving QCD can help us determine the nature of this fine tuning
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Large stars use He and neutrons to build new nuclei.

Higher temperatures and higher densities are needed.

mass/energy
3 4He:  0 MeV

when matter is cold



mass/energy
 4He + “8Be”:  +0.09 MeV3 4He:  0 MeV

but when matter is hot, T > 108 K

even more finely tuned



mass/energy
 4He + “8Be”:  +0.09 MeV3 4He:  0 MeV

and then the 3rd 4He can be captured

➥

➥

➥
 12C:  -7.3 MeV

the triple-α process

solving QCD can help us understand this fine tuning:
chance?  fundamental?

even more finely tuned - source of complex life

Hoyle State
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mass/energy

Nuclear Matter



mass/energy

Nuclear Matter Strange Matter



mass/energy

➥

Nuclear Matter Strange Matter

Precise location depends upon detailed QCD interactions:
Solving QCD can help us determine this phase transition

Energy level spacing depends 
on 3-body interactions



Importance of QCD in Nuclear Physics
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... fundamental symmetries (parity violation, CP, ...)



Multi-Hadron Interactions:
Scattering



Scattering

e−i�p·�xe+i�p·�x

Scattering 
Phase Shift
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Scattering off “Hard Sphere”
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L

λ
∼ 4− 6

State of the art 
lattice QCD 
calculations



Pacman Boundary Conditions



Scattering

e−i�p·�xe+i�p·�x

Scattering 
Phase Shift



single particle cavity modes
one dimension

periodic boundary conditions

En =
�

m2 + q2n

qn =
2πn

L



periodic boundary conditions

En =
�

m2 + q2n

qn =
2πn

L

single particle cavity modes
one dimension



two particle modes



two particle modes

repulsive interaction



two particle modes

attractive interaction



two particle modes

stronger attraction



two particle modes

absence of interactions

energy eigenvalues modified by interactions

p(n) = qn =
2πn

L

E(n) = 2m+∆E(n) = 2
�
m2 + p2(n)

LQCD



−3 −2 −1 0 1 2 3

η2

−40

−30

−20

−10

0

10

20

30

40

S
(η

2 )

two particle modes
energy eigenvalues modified by interactions

S(η2) = limΛ→∞

Λ�

n

1

n2 − η2
− 4πΛ

knowing the phase shift is 
equivalent to knowing the 
two-particle interactions 

E(n) = 2m+∆E(n) = 2
�
m2 + p2(n)

rigorous
 relation



Challenges of Lattice QCD?

standard challenges for lattice QCD

challenges for nuclear physics applications of 
lattice QCD



Lattice QCD:  Standard Challenges
lattice spacing: desire at least 3 lattice spacings 
(preferably all < 0.1 fm)

tcpu ∼ 1/a6

lattice volume:                 (simple quantities)
                                         better

mπL ≥ 4

mπL ≥ 2π

quark mass: desire to run at physical quark masses
(even better                                    )

tcpu ∼ 1/mq

100 � mπ � 300 MeV

disconnected diagrams: computationally much more 
expensive both in cpu hours and file storage



Lattice QCD: Challenges for Nuclear Phsysics
energy scales: energy scales of interest to nuclear physics 
are MeV (or even KeV) while total energy is GeV

signal to noise problem: baryon correlation functions have 
exponentially hard signal to noise problem

S/N ∼ Ze−A(mN− 3
2mπ)t A = number of nucleons

large basis of interpolating fields: to project onto the 
various densely packed energy levels in (small) nuclei, 
need large basis of operators

Wick contractions: all the Wick contractions of the quark 
fields must be formed

γ =
√
MB

γdeut � 45 MeV

mπL >> 1

γL >> 1new small scale

these are/will be the dominant cost for the entire calculation



Computational Cost

For serious, respectable, calculation of nucleon-
nucleon interactions, at the physical pion mass, with 

existing algorithms

mπ � 140 MeVa � 0.13 fm L � 8 fm

mπL � 5.5

tCPU ∼ 100 TeraFlops Years!

~1 week on Sequoia (20 PetaFlops) BG/Q @ LLNL

1 Billion CPU hours



Examples



H-Dibaryon

|H� ∼ |uuddss�

In dense nuclear matter, energetically favorable

|B� ∼ |uds�

1977 - Jaffe proposed H-dibaryon bound state

∼ |ΛΛ�

Bound H-Dibaryon not found experimentally, but 
evidence for shallow bound state or resonance
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High statistics crucial
~0.5 x 106

NPLQCD 2010



Is H-Dibaryon bound?

Scattering State: ∆E =
4πa

ML3

�
1 +O

� a

L

��
∆E = 2

�
M2 + k2 − 2m

Need Multiple Volumes! (or momentum boosted systems)

κ = γ +
g1
L

�
e−γL +

√
2e−

√
2γL

�
+ · · ·

κ2 = −k2Bound State:

γ =
�

M∞
Λ B∞

H
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Volume dependence of Lambda
NPLQCD:  PRD 84 (2011)

mπ �
400 MeV
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(no electro-weak, single lattice 
spacing, single pion mass)

mπ ∼ 400 MeV



H-Dibaryon from Lattice QCD
“Evidence for a bound H-Dibaryon from 
lattice QCD”  PRL 106, 162001 (2011)

“Bound H-dibaryon in flavor SU(3) limit of 
lattice QCD”  PRL 106, 162002 (2011)

Nf = 2 + 1, as � 0.12 fm,

mπ � 390 MeV, L = 2.0, 2.5, 3.0, 3.9 fm

Nf = 3, as � 0.12 fm,

mπ � 670, 830, 1015 MeV, L = 2.0, 3.0, 3.9 fm

first calculation of a bound, multi-baryon system 
from lattice QCDBut not observed experimentally!
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Simple extrapolation to physical pion mass

NPLQCD:  Mod.Phys.Lett. A 26 (2011)

More sophisticated extrapolations (effective field theory) 
consistent with linear in pion mass

Haidenbauer and Meissner:  Phys.Lett. B 706 (2011)

Haidenbauer and Meissner:  arXiv:1111.4069

electromagnetic and weak interactions not included



Nucleon-Nucleon Interactions



3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
In both channels the lightest lattice datum constrains the
chiral extrapolation to two distinct bands which are sen-
sitive to both the quark mass dependence of gA and the
sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.

FIG. 3: Allowed regions for the scattering length in the 1S0

channel as a function of the pion mass. The experimental
value of the scattering length and NDA have been used to
constrain the extrapolation in both BBSvK [25, 26, 27] and
W [22, 23, 24] power-countings at NLO.

FIG. 4: Allowed regions for the scattering length in the
3S1 −

3D1 coupled-channels as a function of the pion mass.
The experimental value of the scattering length and NDA
have been used to constrain the extrapolation in BBSvK [27]
power-counting at NLO. (W counting gives essentially iden-
tical results.)

Without the resources to perform similar lattice QCD
calculations in different volumes, and observing that
most energy-splitting are positive, we have assumed that
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492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
In both channels the lightest lattice datum constrains the
chiral extrapolation to two distinct bands which are sen-
sitive to both the quark mass dependence of gA and the
sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.

FIG. 3: Allowed regions for the scattering length in the 1S0

channel as a function of the pion mass. The experimental
value of the scattering length and NDA have been used to
constrain the extrapolation in both BBSvK [25, 26, 27] and
W [22, 23, 24] power-countings at NLO.

FIG. 4: Allowed regions for the scattering length in the
3S1 −

3D1 coupled-channels as a function of the pion mass.
The experimental value of the scattering length and NDA
have been used to constrain the extrapolation in BBSvK [27]
power-counting at NLO. (W counting gives essentially iden-
tical results.)

Without the resources to perform similar lattice QCD
calculations in different volumes, and observing that
most energy-splitting are positive, we have assumed that

Lattice QCD 2006:   NN scattering

For quark masses  > 2.5 x physical:
fine tuning gone

3S1
1S0
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Nucleon-Nucleon
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Nucleon-Nucleon
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pion mass was not 
expected by most
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Hyperon-Nucleon Interactions
and

Neutron Stars



Approximate neutron star by sea of static neutrons

Fumi’s Theorem
Change in energy due to impurity

∆E = − 1

πµ

� kF

0
dkk

�
δl(k)

ρn ∼ 0.4 fm−3

add Sigma Hyperons

µn � Mn + 150 MeV

µe � 200 MeV

µΣ− = mΣ− +∆E � 1290 MeV Sigma’s important
(strange quarks)∆E � 100 MeV
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FIG. 1: Predicted 1S0 nΣ− phase shift vs. laboratory mo-
mentum at the physical pion mass, compared with other de-
terminations, as discussed in the text.

EFT of nucleons, hyperons and pseudo-scalar mesons (π,
K and η), constrained by chiral symmetry [17, 20, 21].

At leading order (LO) in the expansion, the nΣ− interac-

tion is given by one-meson exchange together with a con-

tact operator that encodes the low-energy effect of short-
distance interactions. As the contact operators are inde-

pendent of the light-quark masses, at LO the quark-mass

dependence of the nΣ− interactions are dictated by the

meson masses. Therefore, in each partial wave, a single

lattice datum at a sufficiently low pion mass determines

the coefficient of the contact operator, thereby determin-

ing the LO interaction, including energy-independent and
local potentials, wavefunctions and phase shifts, at the

physical point.

We find that our LQCD calculations in the 1S0 nΣ−

channel are consistent with the SU(3) symmetry expec-

tations. At mπ ∼ 389 MeV, using volume extrapola-

tion as described above, we find that this channel is

bound, with binding energy B = 25 ± 9.3 ± 11 MeV.

In the EFT, the coefficient of the LO contact opera-

tor in this channel is determined by tuning it to repro-

duce the LQCD-determined binding energy. We find that

this channel becomes unbound at mπ ∼ 300 MeV, in

agreement with Ref. [42], which constrained the LO con-

tact operator using experimental data. In Fig. 1, we

show the predicted 1S0 nΣ− phase shift at the phys-

ical pion mass –(dark,light) blue bands correspond to

(statistical,systematic) uncertainties, and compare with

the EFT constrained by experimental data [21], the Ni-

jmegen NSC97f model [12], and the Jülich ’04 model [16].

The systematic uncertainties on our predictions do reflect

omitted higher order effects in the EFT.

The 3S1 nΣ− channel is found to be highly repul-

sive (see Fig. 2), and the potential required to gen-

erate such an interaction has a hard repulsive core of

extended size. Such a core, if large enough, violates

a condition required to use Lüscher’s relation, namely

R � L/2 where R is the range of the interaction, and so

we have determined EFT potentials directly by solving
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FIG. 2: LQCD predicted 3S1 nΣ− phase shift vs. laboratory
momentum at the physical pion mass, compared with other
determinations, as discussed in the text.

the 3-dimensional Schrodinger equation to reproduce the

results of the LQCD calculations. The repulsive cores

are found to be large, and formally preclude the use of

Lüscher’s relation, but both methods lead to phase shifts

that agree within uncertainties. In Fig. 2, we show the

predicted 3S1 nΣ− phase shift at the physical pion mass.

At neutron number density, ρn ∼ 0.4 fm
−3

, the neu-

tron chemical potential is µn ∼ MN + 150 MeV due to

interactions, and the electron chemical potential, µe− ∼
200 MeV [43]. Therefore µn + µe− ∼ 1290 MeV, and

consequently, if µΣ− = MΣ + ∆E <∼ 1290 MeV, or

∆E <∼ 100 MeV, then the Σ−, and hence the strange

quark, will play a role in the dense medium. While Fumi’s

theorem provides the energy shift of an infinitely massive

impurity in a non-interacting Fermi gas, it is known to

provide an estimate that is good at the ∼ 30% level for

the energy-shift of a finite-mass particle in a weakly cou-

pled fermi system. We assume that this is also true for a

Σ− in a dense system of neutrons, for which the energy

shift is

∆E = − 1

πµ

� kf

0
dk k [

3

2
δ3S1

(k) +
1

2
δ1S0

(k) ] , (2)

where µ is the reduced mass in the nΣ− system. The

resulting energy shift and uncertainty is shown in Fig. 3.

As ∆E = 46± 13± 24 MeV at ρn = 0.4 fm
−3

, we expect

that the Σ− and strange quarks do play a role in the

dense medium.

In this letter, we have presented the first physical

LQCD predictions for hypernuclear physics. The 1S0 and
3S1 nΣ− scattering phase shifts shown in Fig. 1 and Fig. 2

are the first, first principles, predictions for hypernuclear

physics. While the LQCD calculations have been done

at a single lattice spacing, estimates of lattice spacing

artifacts suggest that they are small. The nΣ− interac-

tion is critical in determining the relevance of hyperons

in dense neutron matter, and we have used the LQCD

predictions of the phase shifts to estimate the Σ− energy

shift in the medium. Our calculation shows that hyper-

Lattice QCD + LO EFT

NPLQCD:  
arXiv:1204.3606



nΣ−

0 0.1 0.2 0.3 0.4 0.5
ρn (fm)-3

0

20

40

60

80

100
Δ

E 
(M

eV
)  

 Σ
−

Nuclear matter

µΣ− = mΣ− +∆E � 1290 MeV Sigma’s important
(strange quarks)∆E � 100 MeV

NPLQCD:  
arXiv:1204.3606



Future Outlook

compute                        etc., as a function of the light 
quark masses, exploring the observed fine tunings in 
light nuclei

mn −mp, Bd,
With Lattice QCD we can

compute NNN interactions from QCD

compute Nucleon-Nucleon, Hyperon-Nucleon and 
Hyperon-Hyperon interactions from QCD

in particular, combined with the methods of many-
body Effective Theories, we can extend this 
knowledge to larger nuclei mapping out the quark 
mass dependence of the Hoyle-state, for example
nuclear matrix elements: Parity Violating, EDM, ...
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S ∼

V ∼

Signal to Noise

lim
t→∞

S ∼ e−mN t

lim
t→∞

σ2 ∼ e−3mπt

lim
t→∞

S

σ
∼ e−(mN− 3

2mπ)t

3 π NN†
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